
The Haar Measure Existence and Uniqueness
±ε

Jorge Blanco1

Contents

1 Preliminaries 3
1.1 Definitions in Measure Theory and Topology . . . . . . . . . . 3
1.2 Theorems in Measure Theory and Topology . . . . . . . . . . 4

2 Motivating Examples and Lie groups 5

3 Books 6

4 Topological groups 6
4.1 Basic theory of topological groups . . . . . . . . . . . . . . . . 7
4.2 Translates and Continuity . . . . . . . . . . . . . . . . . . . . 7

5 Existence 9
5.1 History and Motivation . . . . . . . . . . . . . . . . . . . . . . 9
5.2 What if we had a measure? . . . . . . . . . . . . . . . . . . . 9

5.2.1 Quick Intuition behind the proof . . . . . . . . . . . . 10
5.3 Existence Proof . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3.1 Step 1 - Haar Covering Number . . . . . . . . . . . . . 11
5.3.2 Step 2 - Almost Linear functional . . . . . . . . . . . . 13
5.3.3 Step 3 - Finding our linear functional . . . . . . . . . . 15

6 Uniqueness 16

7 Haar Measure on Qp 18
7.1 Some basics of Qp p-adic numbers . . . . . . . . . . . . . . . . 18
7.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.3 Constructing the Haar Measure of Qp . . . . . . . . . . . . . . 19

1jorge.blanco@yale.edu Please let me know if you find any typos, as I have
likely(with probability 1) missed some.

1

mailto:jorge.blanco@yale.edu


8 Unimodularity 21
8.1 The modular function . . . . . . . . . . . . . . . . . . . . . . 21

9 References 25

2



1 Preliminaries

In this section, we discuss essential theorems and concepts from measure
theory and topology required to understand the proof of the Haar measure’s
existence and uniqueness (up to a constant). These definitions and theorems
are detailed in Rudin’s “Real and Complex Analysis”[Rud87] and Munkres’s
“Topology.”[Mun00]

1.1 Definitions in Measure Theory and Topology

1. Sigma Algebra (σ-algebra): A σ-algebra on a set X is a collection
S of subsets of X that satisfies:

i. X ∈ S.
ii. If A ∈ S, then X \ A ∈ S.
iii. If {Ai}∞i=1 is a countable collection of sets in S, then

⋃∞
i=1Ai ∈ S.

2. Measure: Let X be a set equipped with a σ-algebra S. A measure on
(X,S) is a function µ : S → [0,∞] such that

i. µ(∅) = 0,

ii. if {Aj}∞j=1 is a sequence of disjoint sets in M, then µ
(⋃∞

j=1Aj

)
=∑∞

j=1 µ(Aj).

3. Topology: A topology on a set X is a collection T of subsets of X
called open sets, satisfying the following properties:

i. ∅ and X itself are in T .

ii. The union of any collection of sets in T is also in T .

iii. The intersection of any finite number of sets in T is also in T .

4. Borel Sigma Algebra: The Borel σ-algebra on a topological space
X is the smallest σ-algebra containing all the open sets. We denote by
B(X).

5. Topological Basis A collection B of open sets in a topological space
X is called a basis for the topology if every open set in X is a union of
sets in B.
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6. Product Spaces (Uncountable): Given a family {Xα}α∈A of spaces
(where A is an index set, possibly uncountable), the product space∏

α∈AXα is the set of all functions f such that f(α) ∈ Xα for each α ∈
A. The usual topology on this product space is the product topology,
which has as a basis sets of the form

∏
α∈A Uα, where Uα is open in Xα

and Uα ̸= Xα for only finitely many α.

7. Locally Compact Group: A topological group G is called locally
compact if every point x ∈ G has a compact neighborhood, i.e., there
exists an open set U and a compact set K such that x ∈ U ⊆ K.
Additionally, the group operations (multiplication and taking inverses)
are required to be continuous, and its topology must be Hausdorff.

8. Outer Regular Measure: A measure µ on a measurable space (X,S)
is said to be outer regular if for every measurable set A ⊆ X, the
measure of A can be approximated from above by open sets, i.e.,

µ(A) = inf{µ(U) : A ⊆ U,U is open}.

9. Inner Regular Measure: A measure µ on a measurable space (X,S)
is said to be inner regular if for every measurable set A ⊆ X, the
measure of A can be approximated from below by compact subsets,
i.e.,

µ(A) = sup{µ(K) : K ⊆ A,K is compact}.

10. Radon Measure: A Radon measure µ on a topological space X is a
measure that is both outer regular and inner regular, and additionally,
µ(K) < ∞ for every compact set K ⊆ X.

11. Left Haar Measure: A left Haar measure on a locally compact group
G is a non-zero left-invariant (µ(gA) = µ(A)) Radon measure µ on G.

1.2 Theorems in Measure Theory and Topology

1. Riesz Representation Theorem: Let X be a locally compact Haus-
dorff space and let Cc(X) be the space of continuous functions with
compact support on X. For every positive linear functional Λ on Cc(X)
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[ Λ(f) ≥ 0 for f ≥ 0 ] , there exists a unique Radon measure µ on X
such that for all f ∈ Cc(X),

Λ(f) =

∫
X

f dµ.

2. Urysohn’s Lemma: Let X be a locally compact Hausdorff space, let
K be a nonempty compact subset of X, and U an open subset of X
such that K ⊆ U . Then there is a function f ∈ C+

c (X) such that
f(x) = 1 when x ∈ K, supp(f) ⊆ U , and 0 ≤ f(x) ≤ 1 for all x ∈ X.

3. Tychonoff’s Theorem: The product of any collection of compact
topological spaces is compact in the product topology. That is, if
{Xα}α∈A is a family of compact spaces, then the product space

∏
α∈AXα

equipped with the product topology is compact.

4. Finite Family property

(a) A family {Fα}α∈A of subsets of X is said to have the finite inter-
section property if

⋂
α∈B Fα ̸= ∅ for all finite B ⊆ A.

(b) A topological space X is compact if and only if for every fam-
ily {Fα}α∈A of closed sets with the finite intersection property,⋂

α∈A Fα ̸= ∅.

2 Motivating Examples and Lie groups

Although locally compact groups most frequently arise in practice as Lie
groups, it is not accurate to say that all interesting locally compact groups
are Lie groups. To understand this, consider the following two examples:

1.
∏
(Z/2Z): This is the state space of the most basic stochastic process

- An infinite sequence of coin tosses.

2. Qp: These are the p-adic numbers, which are another way to complete
the rational numbers.

In the context of Lie groups, proving the existence of a Haar measure
is relatively straightforward due to their nature as differentiable manifolds,
which allows for the application of differential geometry tools. For a detailed
explanation and proofs, refer to the document cited as [Dow24], which also
includes additional interesting results.
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3 Books

I compiled these notes from numerous sources, primarily drawing from texts
that often overlap in content. While no single book was followed, the core ma-
terial is based on works by Hewitt and Ross[HR63], Folland[Fol95], Deitmar
and Echterhoff[DE09], and Ramakrishnan and Valenza[RV99]. Additional
references are cited as necessary.

4 Topological groups

Recall that a topological group is a group G, together with a topology on the
set G such that the group multiplication

G×G −→ G

(x, y) 7−→ xy,

and inversion

G −→ G

x 7−→ x−1,

are both continuous maps.

Remark 1. It suffices to require the map α : (x, y) 7→ x−1y to be continuous.

We now present some examples of topological groups. The verification
that these examples satisfy the defining properties of topological groups is
left as an exercise.

Example 1. Any given group becomes a topological group when equipped with
the discrete topology, i.e., the topology, in which every subset is open. In
this case, we speak of a discrete group

Example 2. The additive and multiplicative groups (R,+) and (R×,×) of
the field of real numbers are topological groups with their usual topologies.
So is the group GLn(R) of all real invertible n × n matrices, which inherits
the Rn2

-topology from the inclusion GLn(R) ⊂ Mn(R) ∼= Rn2
, where Mn(R)

denotes the space of all n× n matrices over the reals.
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4.1 Basic theory of topological groups

In this section, we introduce some of the basic theory of topological groups.
This section contains the essential theorems needed to understand the proofs
of the existence and uniqueness of the Haar measure.

Theorem 2. Let G be a topological group.

1. The topology of G is invariant under translations and inversion; that
is, if U is open then so are xU , Ux, and U−1 for any x ∈ G. Moreover,
if U is open then so are AU and UA for any A ⊆ G.

2. For every neighborhood U of 1 there is a symmetric neighborhood V of
1 such that V V ⊆ U .

Proof. 1. The first assertion is equivalent to the separate continuity of the
map (x, y) 7→ xy and the continuity of the map x 7→ x−1. The second
one follows since AU =

⋃
x∈A xU and UA =

⋃
x∈A Ux.

2. Continuity of (x, y) 7→ xy at 1 means that for every neighborhood U of
1 there are neighborhoods W1,W2 of 1 with W1W2 ⊆ U . The desired
set V can be taken to be W1 ∩W2 ∩W−1

1 ∩W−1
2 .

Theorem 2 effectively gives us two important characterizations of the
defining properties of topological groups. Next, we consider functions from
the group to the complex plane, and define the basic objects needed for our
purposes:

4.2 Translates and Continuity

Definition 3. Let f : G → C, and let y ∈ G then we define the left and
right translate of the function f , respectively, as follows:

(Lyf)(x) = f(y−1x)

and
(Ryf)(x) = f(xy)

Remark 4. We defined left translates as we did so that Lxy = LxLy
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Using the definitions previously outlined 3 , we can formulate a definition
of uniform continuity within a group context. Given that the group may
not be abelian, it is necessary to differentiate between left and right uniform
continuity.

Definition 5. We say a function f is Left uniform continuous if

∥Lyf − f∥∞ → 0

and similarly, f is Right uniform-continuous if

∥Ryf − f∥∞ → 0

as y → {1}

Remark 6. Note that above ∥ · ∥∞ denotes the supremum norm. For the
remaining of this paper ∥ · ∥ = ∥ · ∥∞ unless otherwise stated

We now present a generalization of the well-known theorem from Analysis
1: continuous functions on compact sets are uniformly continuous.

Proposition 7. If f ∈ Cc(G) then f is left and right uniformly continuous.

Proof. We give the proof for Ryf ; the argument for Lyf is similar. Given
f ∈ Cc(G) and ϵ > 0, let K = supp(f). For every x ∈ K there is a
neighborhood Ux of 1 such that |f(xy) − f(x)| < ϵ

2
for y ∈ Ux, and there

is a symmetric neighborhood Vx of 1 such that VxVx ⊆ Ux. The sets xVx (
x ∈ K ) cover K, so there exist x1, . . . , xn ∈ K such that K ⊆

⋃n
j=1 xjVxj

.
Let V =

⋂n
j=1 Vxj

; we claim that ∥Ryf − f∥ < ϵ for y ∈ V .

If x ∈ K then there is some j for which x−1
j x ∈ Vxj

, this is because

K ⊆
⋃n

j=1 xjVxj
. Therefore, xy = xj(x

−1
j xy) ∈ xjUxj

. But then

|f(xy)− f(x)| ≤ |f(xy)− f(xj)|+ |f(xj)− f(x)| < ϵ

2
+

ϵ

2
= ϵ.

Similarly, if xy ∈ K then |f(xy) − f(x)| < ϵ. But if x and xy are not in K
then f(x) = f(xy) = 0, so we are done.
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5 Existence

5.1 History and Motivation

The Haar measure, first introduced by Haar in 1933 [Haa33] , established the
existence of such a measure on every locally compact group with a count-
able basis. Weil [Wei65] later extended this to all locally compact groups
through the axiom of choice. Alternative proofs that do not rely on this ax-
iom were provided by Cartan[Car40] and Bredon[Bre63], with Alfsen[Alf63]
offering further simplifications. Furthermore, these results were used by von
Neumann [vN33] to establish Hilbert’s fifth problem in the case of compact
groups.

5.2 What if we had a measure?

Let us first begin with a definition:

Definition 8 (C+
c (G) - space).

C+
c (G) = {f ∈ Cc(G) : f ≥ 0, ∥f∥∞ > 0}

In other words, this is the space of compactly supported functions on G that
are not identically 0

To clarify the rationale behind the proof’s methodology, we will start by
presenting a proposition that sheds light on the steps taken to establish the
existence of the Haar Measure.

Proposition 9. Let µ be a Radon measure on the locally compact group G,
then µ is a left Haar measure if and only if∫

G

Lyf dµ =

∫
G

f dµ

for every f ∈ C+
c (G) and every y ∈ G.

Proof. =⇒ The forward direction is effectively immediate via an approxi-
mation by simple measurable functions

⇐= Define the positive linear operator by

I(f) =

∫
G

fdµ
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because this is a positive linear functional the Riez Representation
states that the measure µ is unique. Therefore, because

I(Lyf) =

∫
G

f(y−1x)dµ(x)

=

∫
G

f(x)dµy(x) where µy(A) = µ(yA)

and by the assumption I(f) = I(Lyf) we have that∫
G

fdµ =

∫
G

fdµy

thus by the uniqueness of the measure µ we conclude that µ = µy which
concludes this proof

5.2.1 Quick Intuition behind the proof

The essence of Proposition 9 is that demonstrating the existence of a left
Haar measure simply requires identifying a left-invariant linear functional on
Cc(G). To achieve this, we aim to construct a device that is invariant under
left translations to compare functions within C+

c (G). To elucidate how one
might go about doing something like this let us first give some intuition 2:

1. Imagine a function ϕ ∈ C+
c (G) that is bounded by 1, equals 1 on a

small open set, and is supported in a barely larger open set U . [ In the
G = R case you can think of ϕ as a rectangle]

2. If f ∈ C+
c (G) is sufficiently slowly varying so that it is essentially

constant on the left translates of U , f can be well approximated by a
linear combination of left translates of ϕ: f ≈

∑
cjLxj

ϕ[You can think
of this as an approximation of f by rectangles]

3. If µ were a left Haar measure on G, we would then have
∫
f dµ ≈

(
∑

cj)
∫
ϕ dµ. This approximation will get better and better as the

support of ϕ shrinks to a point [You can think of this as a Riemann
sum]

2In the previous iteration of this document I had a different way to give intuition. This
is a slightly different way which is based on Riemann Integration
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4. If we, somehow, can normalize so that we can cancel out the factor of∫
ϕ dµ on the right then we will obtain

∫
f dµ as a limit of the sums∑

cj.

In the following sections, we make this more precise.

5.3 Existence Proof

5.3.1 Step 1 - Haar Covering Number

Definition 10 (Haar Covering Number). Let f, ϕ ∈ C+
c (G) and define

Lxf(y) = f(xy), then

(f : ϕ) = inf

{
n∑

i=1

ci : f ≤
n∑

i=1

ciLxi
ϕ for some n ∈ N and x1, . . . , xn ∈ G

}

When objects are defined in this manner, one should immediately ask
Could the set over which we optimize be empty? Could it be unbounded? The
answer to these questions is No, and this is a consequence of the following
proposition.

Proposition 11. Let f, ϕ ∈ C+
c (G), then 0 < (f : ϕ) < ∞

Proof. We will in fact prove a stronger statement i.e

∥f∥
∥ϕ∥

≤ (f : ϕ) ≤ C(f, ϕ)
∥f∥
∥ϕ∥

where C(f, ϕ) is a constant depending on both functions. Consider the set
Uϵ = {ϕ > 1

2
∥ϕ∥}, it is clear that this set is non-empty as ϕ is continu-

ous and compactly supported so its supremum is achieved. Moreover by
continuity of ϕ we obtain that this set is open and therefore by compact-
ness of supp(f), there exits M translates of U covering supp(f). That is
we have that, supp(f) ⊆ ∪M

i=1giUϵ where g1, . . . , gM are in G, and therefore,
their inverses g−1

1 , . . . , g−1
M are also in G. Let us take precisely these inverses

g−1
1 , . . . , g−1

M to be the translates (“x1, . . . , xn”) theorem 10. Let x ∈ supp(f),
then without loss of generality say that x = g1xϵ for xϵ ∈ Uϵ. Then we have
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that:

2
∑

l Lg−1
l
ϕ(x)

∥ϕ∥
≥

2Lg−1
1
ϕ(x)

∥ϕ∥

≥ 2ϕ(xϵ)

∥ϕ∥
≥ 1

where the first inequality holds as ϕ ∈ C+
c (G), Therefore:

f(x) ≤ ∥f∥ ≤ 2
∥f∥
∥ϕ∥

m∑
j=1

Lg−1
j
ϕ(x)

Thus (f : ϕ) ≤ 2M ∥f∥
∥ϕ∥ . This establishes the desired upper bound. Next, we

give a proof of the lower bound. Let x1, . . . , xn satisfying f ≤
∑n

i=1 ciLxi
ϕ.

Because f ∈ C+
c we have that there exits some x∗ such that ∥f∥ = f(x∗)

then

∥f∥ = f(x∗) ≤
∑
i

ciLxi
ϕ(x∗) ≤ ∥ϕ∥

∑
i

ci

thus

∥f∥
∥ϕ∥

≤
∑
i

ci

as this works for any possible weights c1, . . . , cm, this establishes the claim.

Lemma 12 (Properties of the Haar covering number). Suppose that f, g, ϕ ∈
C+

c .

(a) (f : ϕ) = (Lxf : ϕ) for any x ∈ G.

(b) (cf : ϕ) = c(f : ϕ) for any c > 0 .

(c) (f + g : ϕ) ≤ (f : ϕ) + (g : ϕ) .

(d) (f : ϕ) ≤ (f : g)(g : ϕ).
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Note that (a) tells us that the Haar covering number is left G-invariant.
Then (b) and (c) tell us that it is sub-linear when the “relative” function
ϕ (the second argument) is fixed. We refer to property (d) as the “Tower
Property”

Proof. Properties (a),(b),(c) follow quickly from the definition thus these are
left as exercises. (d) is a little less clear but it follows immediately from the
observation that if

f ≤
∑
j

cjLxj
g

and
g ≤

∑
k

dkLykϕ

then
f ≤

∑
j,k

cjdkLxjykϕ.

Thus because ∑
j,k

cjdk =

(∑
j

cj

)(∑
k

dk

)
(d) follows.

5.3.2 Step 2 - Almost Linear functional

Following Haar’s original idea, we make a normalization by choosing, a fixed,
f0 ∈ C+

c , and defining:

Iϕ(f) =
(f : ϕ)

(f0 : ϕ)
for f, ϕ ∈ C+

c .

From Lemma 12 we obtain that for each fixed ϕ the functional Iϕ is
left-invariant and it is sub-linear. Moreover the tower property gives us the
following:

(f0 : f)
−1 ≤ Iϕ(f) ≤ (f : f0).

We refer to these as “tower bounds”. We show that Iϕ exhibits approx-
imate additivity for small supp(ϕ). This approximation will enable us to
estimate a positive linear functional, upon which we can employ the Riesz
Representation Theorem to obtain the desired Haar measure.
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Lemma 13. If f1, f2, ϕ ∈ C+
c and ϵ > 0, then there exists a neighborhood V

of 1 such that

Iϕ(f1) + Iϕ(f2) ≤ Iϕ(f1) + Iϕ(f2) ≤ Iϕ(f1 + f2) + ϵ

whenever supp(ϕ) ⊆ V .

Proof. Fix g ∈ C+
c (G) such that g = 1 on supp(f1+f2) and let δ be a positive

number (to be determined later). Let h = f1 + f2 + δg, and put

hi =
fi
h

for i = 1, 2

with hi = 0 wherever fi = 0 (this is to rule out a 0/0 case). Then hi ∈
C+

c (G), so by Proposition 7 there is a neighborhood V of 1 in G such that
|hi(x) − hi(y)| < δ for i = 1, 2 and y−1x ∈ V . Suppose ϕ ∈ C+

c (G) and
supp(ϕ) ⊆ V . If h ≤

∑
cjLxj

ϕ then

fi(x) = h(x)hi(x) ≤
∑

cjϕ(x
−1
j x)hi(x) ≤

∑
cjϕ(x

−1
j x)[hi(xj) + δ],

because |hi(x) − hi(xj)| < δ whenever x−1
j x ∈ supp(ϕ). Since h1 + h2 ≤ 1,

this gives

(f1 : ϕ) + (f2 : ϕ) ≤
∑

cj[h1(xj) + δ] +
∑

cj[h2(xj) + δ] ≤
∑

cj[1 + 2δ].

Then taking the infimum of all such sums
∑

cj, and using the sub-additivity
of Iϕ we obtain:

Iϕ(f1) + Iϕ(f2) ≤ (1 + 2δ)Iϕ(h) ≤ (1 + 2δ)Iϕ(f1 + f2) + δIϕ(g).

By the tower property, we can reach the desired conclusion by taking δ small
enough so that

2δ(f1 + f2 : f0) + δ(1 + 2δ)(g : f0) < ϵ.
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5.3.3 Step 3 - Finding our linear functional

We now possess the necessary tools to state and prove the existence of the
Haar measure. The central concept of this proof involves constructing a
positive linear functional I as the limit of our nearly positive linear functions
Iϕ within an appropriate space.

Theorem 14. Every locally compact group G possesses a left Haar Measure

Proof. We will use Tychonoff’s theorem and the Riesz Representation Theo-
rem in this proof. For each f ∈ C+

c let Xf be the interval [(f0 : f)
−1, (f : f0)],

and let X =
∏

f∈C+
c
Xf . Then X is compact by Tychonoff’s theorem, and

by the tower bounds, every Iϕ ∈ X ( in the sense that Iϕ(f) ∈ X for all f).
For each open neighborhood V of 1, let:

K(V ) = ClX({Iϕ : supp(ϕ) ⊆ V })

Where ClX(A) denotes the closure of a set A inX. It is clear thatK(
⋂

n Vj) ⊆⋂
n K(Vj) . Similarly, by definition

K

(
n⋂

j=1

Vj

)
= ClX

(
{Iϕ : supp(ϕ) ⊆

n⋂
j=1

Vj}

)

is non-empty by Urysohn’s Lemma. Therefore, because X is compact,the
Finite Family intersection property 4, there exits I0 such that

I0 ∈
⋂
V ∋1

K(V )

left-invariant positive linear functional on Cc(G). Note that I, which lies in
a product of closed intervals excluding zero, cannot be the zero function on
Cc(G), so that the extended functional will likewise be nontrivial.

Since I is in the intersection of the closure of the sets {Iϕ : supp(ϕ) ⊆ U},
it follows that every open neighborhood of I in the product X intersects each
of the sets {Iϕ : supp(ϕ) = U}. We may unwind this assertion as follows:

For every open neighborhood U of 1, and for every trio of functions
f1, f2, f3 ∈ C+

c and every ε > 0, there exists a function ϕ ∈ C+
c with

supp(ϕ) ⊆ U such that |I(fj)− Iϕ(fj)| < ε, j = 1, 2, 3.
This statement clearly extends to any finite collection of fj by the defi-

nition of product topology. Thus, given f ∈ Cc and a ∈ R, we may simul-
taneously make I(af) arbitrarily close to Iϕ(aI) and aI(f) arbitrarily close
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to aIϕ(f). Using Lemma 12, this shows that I(cf) = cI(f). Similarly, we
have that I is left translation-invariant and at least subadditive. To see that
I is in fact additive, we use Lemma 13 to choose a neighborhood U of 1 such
that

Iϕ(f1) + Iϕ(f2) ≤ Iϕ(f1 + f2) +
ε

4

whenever supp(ϕ) ⊆ U . Then choose ϕ with supp(ϕ) ⊆ U such that
I(f1), I(f2), and I(f1 + f2) all likewise lie within ε/4 of Iϕ(f1), Iϕ(f2), and
Iϕ(f1 + f2), respectively. Since ε is arbitrary, it follows at once from the
inequality above and the general sublinearity of I, that I(f1 + f2) = I(f1) +
I(f2), as required.

Finally, extend I to a positive left translation-invariant linear functional
on Cc(G) by setting I(f) = I(f+) − I(f−). As we remarked above, in view
of our discussion of translation-invariant radon measures 9 and the Riesz
representation theorem, this implies that G admits a left Haar measure µ
and completes the existence proof.

6 Uniqueness

Theorem 15. If λ and µ are left Haar measures on G, there exists c ∈ (0,∞)
such that µ = cλ.

Proof. It is clear that µ = cλ is equivalent to the claim that the ratio∫
fdλ∫
fdµ

is the same for all f ∈ C+
c (G). Suppose then that f, g ∈ C+

c (G). Fix a
symmetric compact neighborhood V0 of 1 and set

A = (supp f)V0 ∪ V0(supp f), B = (supp g)V0 ∪ V0(supp g).

Then A and B are compact, and for y ∈ V0, f(xy)−f(x) and g(yx)−g(x)
are supported in A and B respectively, as functions of x.

Given ε > 0, by Proposition 7 there is a symmetric neighborhood V ⊆ V0

of 1 such that |f(xy)−f(x)| < ε and |g(yx)−g(x)| < ε for all x when y ∈ V .
Pick h ∈ C+

c (G) with h(x) = h(x−1) and supp(h) ⊆ V . Then
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∫
hdµ

∫
fdλ =

∫∫
h(y)f(x)dλ(x)dµ(y) =

∫∫
h(y)f(yx)dλ(x)dµ(y),

and since h(x) = h(x−1),

∫
hdλ

∫
fdµ =

∫∫
h(x)f(y)dλ(x)dµ(y)

=

∫∫
h(y−1x)f(y)dλ(x)dµ(y)

=

∫∫
h(x−1y)f(y)dµ(y)dλ(x)

=

∫∫
h(y)f(xy)dµ(y)dλ(x).

=

∫∫
h(y)f(xy)dλ(x)dµ(y).

(Fubini’s theorem is applicable since all the integrals are effectively over
sets that are compact and hence of finite measure.) Therefore,∣∣∣∣∫ hdλ

∫
fdµ−

∫
hdµ

∫
fdλ

∣∣∣∣ = ∣∣∣∣∫∫ h(y)f(xy)− f(yx)dλ(x)dµ(y)

∣∣∣∣
≤ ελ(A)

∫
hdµ.

In the same way,∣∣∣∣∫ hdλ

∫
gdµ−

∫
hdµ

∫
gdλ

∣∣∣∣ ≤ ελ(B)

∫
hdµ.

Dividing these inequalities by
∫
hdµ

∫
fdµ and

∫
hdµ

∫
gdµ, respectively,

and adding them, we obtain∣∣∣∣∫ fdλ∫
fdµ

−
∫
gdλ∫
gdµ

∣∣∣∣ ≤ ε

[
λ(A)∫
fdµ

+
λ(B)∫
gdµ

]
.

Note that these rations are well-defined since the functions f and g are
both in C+

c (G). Since ε is arbitrary, the ratio of the integrals with respect to
λ and µ is the same for f and g, which is what we needed to show.
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7 Haar Measure on Qp

7.1 Some basics of Qp p-adic numbers

Fix p prime then, by the Fundamental Theorem of Arithmetic, any r ∈ Q
can be written as

r = pmq

for m ∈ Z and q is a rational number whose numerator and denominator are
not divisible by p

Definition 16. Let p be a fixed prime number, then for r ∈ Q

|r|p =
1

pm
= p−m for r ̸= 0

|0|p = 0.

where m satisfies the condition above.

Example 3. Consider

140

297
= 22 × 3−3 × 5× 7× 11−1

then

∣∣∣∣140297

∣∣∣∣
2

=
1

4
,

∣∣∣∣140297

∣∣∣∣
13

= 1∣∣∣∣140297

∣∣∣∣
3

= 33,

∣∣∣∣140297

∣∣∣∣
5

=
1

5

7.2 Properties

1. |x|p ≥ 0 for all x inQ

2. |x|p = 0 ⇐⇒ x = 0

3. |xy|p = |x|p|y|p for all x, y ∈ Q

4. |x+ y|p ≤ max{|x|p, |y|p} for all Q

18



Note that the properties given above establish that | · |p is an absolute
value, in fact, it is not a norm as it is not homogeneous. However, this is all
we need to define a metric on Q, we can do this in the usual way:

dp(r1, r2) = |r1 − r2|p
Considering this metric, we define the p-adic numbers as the completion
of the rational numbers under the p-adic norm. This process mirrors the
construction of real numbers, which are the completion of the rationals under
the Euclidean norm. In class, we explored another characterization of the
p-adic numbers; both characterizations are equivalent, as the subsequent
theorem precisely states.

Theorem 17. If m ∈ Z and cj ∈ {0, 1, . . . , p− 1} for j ≥ m, the series

∞∑
j=m

cjp
j

converges in Qp. Moreover, every p-adic number is the sum of such a series.

A proof of this can be found in section 3 of the book [Gou97]

7.3 Constructing the Haar Measure of Qp

The title of this section may be misleading as it suggests constructing a
measure on Qp, which is not my aim. Instead, I will present the measure
in a manner akin to the Lebesgue measure on the real line. The majority
of the material here is derived from [Des22], where detailed discussions can
be found. To avoid redundancy, I will not delve into full details but rather
provide an overview.

We begin by considering the closed ball in the space and looking at some
of its properties. For r ≥ 0 and x ∈ Qp consider the closed ball

B(x, r) = {y ∈ Qp : |x− y|p ≤ r}

There are some interesting properties of this object that will help us build
the Left Haar measure of Qp. We first note that because | · |p takes only on
values of the form pk for k an integer, it follows that for all r > 0, there exits
some ϵ > 0 such that

B(x, r) = B(x, r + ϵ)

In particular this implies that the balls are closed and open.
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Remark 18. It follows that Qp is a Cantor set, that is, totally disconnected
but has no isolated points

It is clear that every point within a ball is a center, and if two balls inter-
sect, one must be contained within the other. This significant observation is
noted as a remark.

Remark 19. If two balls intersect then one ball is contained in the other.

Moreover, because we have defined Qp as the completion of the rationals
under the p-adic norm then it follows that Qp is a separable metric space,
which leads us to our next remark

Remark 20. Qp is a separable metric space =⇒ Every open set is the
union of balls

Let Zp = B(0, 1), and let µ be a left Haar measure on Qp then we may
normalize to make the measure of the p-adic integers Zp be of measure 1,
that is define a new left Haar measure λ as

λ(E) =
1

µ(Zp)
µ(E)

Next, we will make a series of observations that will lead to the desired
formula for the Left Haar measure on Qp:

1. By translation invariance we have that λ(B(x, 1)) = 1 for all x ∈ Qp

2. If m > 0, then B(x, pm) =
⊔pm

i=1B(xi, 1), for some {xi}i.

3. Every open set U can be expressed as

U =
∞⊔
i=1

B(xi, p
mi)

for some {xi}i, note that we may take these balls to be disjoint by
Remark 20

Combining all of these observations we obtain that:

λ(U) =
∞∑
i=1

pmi
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therefore by outer regularity we conclude that

λ(E) = inf

{
∞∑
j=1

pmj : E ⊆
∞⋃
j=1

B(pmj , xj)

}
.

this is the representation of this Haar measure I wanted to present here,
personally, I think it is quite beautiful how the “form” of the outer Lebesgue
measure seems to be the same in both these ways of completing of the ratio-
nals.

8 Unimodularity

In this section, we explain unimodularity, a concept that shows how the
right and left Haar measures differ in a group. While abelian groups have
identical left and right Haar measures, this is not always the case for non-
abelian, locally compact topological groups. Let us consider the following
example from [Bum13] :

Example 4. Consider the group

G =

{(
y x
0 1

) ∣∣∣∣x, y ∈ R, y > 0

}
,

then it is easy to see (using change of variables) that the left- and right-
invariant measures are:

dµL = y−2 dx dy, dµR = y−1 dx dy.

respectively, thus they are not the same. However, there are many cases
where they do coincide.

Definition 21. A locally compact group for which every left Haar measure
is also a right Haar measure is called a unimodular group

8.1 The modular function

Definition 22. Let G be a locally-compact group, and let µ be a Haar mea-
sure on G. For x ∈ G the measure µx, defined by µx(A) = µ(Ax), is a Haar
measure again, as for y ∈ G one has µx(yA) = µ(yAx) = µ(Ax) = µx(A).
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Therefore, by the uniqueness of the Haar measure, there exists a number
∆(x) > 0 with µx = ∆(x)µ. In this way one gets a map ∆ : G → R>0,
which is called the modular function of the group G. If ∆ = 1, then G is
unimodular.

Intuitively, the modular function does exactly what we want it to do:
measure how far away we are from right-invariance. To see this, observe that
µx is a right shift of µ, hence ∆ being identically 1, exactly states that µ is
left and right invariant.

We will end this section with the statement and proof of some important
properties and tools in the theory of the modular function, but before that
we need a lemma:

Lemma 23. Let ν be a Haar measure on G. Then for every f ∈ Cc(G) the
function s 7→

∫
G
f(xs)dν(x) is continuous on G.

Proof. We have to show that for a given s0 ∈ G and given ε > 0 there exists
a neighborhood U of s0 such that for every s ∈ U one has∣∣∣∣∫

G

f(xs)− f(xs0)dν(x)

∣∣∣∣ < ε

. Replacing f by Rs0f(x) = f(xs0), we are reduced to the case s0 = e. Let K
be the support of f , and let V be a compact symmetric unit-neighborhood.
For s ∈ V one has supp(Rsf) ⊆ KV . Let ε > 0. As f is uniformly continu-
ous, there is a symmetric unit-neighborhood W such that for s ∈ W one has
|f(xs)− f(x)| < ε

ν(KV )
. For s ∈ U = W ∩ V one therefore gets∣∣∣∣∫

G

f(xs)− f(x)dν(x)

∣∣∣∣ ≤ ∫
KV

|f(xs)− f(x)| dν(x)

<
ε

ν(KV )
ν(KV ) = ε.

Next we give the promised results, and some brief arguments. Some of
the details are skipped and are left as exercises.

Theorem 24.
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1. The modular function ∆ : G → R>0 is a continuous group homomor-
phism.

2. ∆ = 1 if G is abelian or compact.

3. For y ∈ G and f ∈ L1(G) one has Ryf ∈ L1(G) and∫
G

Ryf(x) dx =

∫
G

f(xy) dx = ∆(y−1)

∫
G

f(x) dx.

4. The equality ∫
G

f(x−1)∆(x−1) dx =

∫
G

f(x) dx

holds for every integrable function f .

Proof.

(3) Part (3) is clear if f is the characteristic function 1A of a measurable
set A. It follows generally by the usual approximation argument.

(1) We now prove part (a) of the theorem. For x, y ∈ G and a measurable
set A ⊆ G, one computes

∆(xy)µ(A) = µxy(A) = µ(Axy) = µy(Ax)

= ∆(y)µ(Ax) = ∆(y)∆(x)µ(A).

Choose A with 0 < µ(A) < ∞ to get ∆(xy) = ∆(x)∆(y). Hence ∆ is a
group homomorphism. Next, we show continuity. Let f ∈ Cc(G) with
c =

∫
G
f(x) dx ̸= 0. By part (3) we have

∆(y) =
1

c

∫
G

f(x−1) dx =
1

c

∫
G

Ry−1f(x) dx.

So the function ∆ is continuous in y by the lemma above.

(2) The Abelian case is clear. If G is compact, then so is the image of the
continuous map ∆. As ∆ is a group homomorphism, the image is also
a subgroup of R>0. But the only compact subgroup of the latter is the
trivial group {1}, which means that ∆ ≡ 1.
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(4) Finally, for part (4) of the theorem let f ∈ Cc(G) and set I(f) =∫
G
f(x−1)∆(x−1) dx. Then, by part (c),

I(Lzf) =

∫
G

f(z−1x−1)∆(x−1) dx =

∫
G

f((xz)−1)∆(x−1) dx

= ∆(z−1)

∫
G

f(x−1)∆((xz)−1) dx =

∫
G

f(x−1)∆(x−1) dx = I(f).

It follows that I is an invariant integral; hence there is c > 0 with
I(f) = c

∫
G
f(x) dx. To show that c = 1 let ε > 0 and choose a

symmetric unit-neighborhood V with |1 −∆(s)| < ε for every s ∈ V .
Choose a nonzero symmetric function f ∈ C+

c (V ). Then

|1− c|
∣∣∣∣∫

G

f(x) dx

∣∣∣∣ = ∣∣∣∣∫
G

f(x) dx− I(f)

∣∣∣∣
≤
∣∣∣∣∫

G

|f(x)− f(x−1)∆(x−1)| dx
∣∣∣∣

=

∣∣∣∣∫
V

f(x)|1−∆(x−1)| dx
∣∣∣∣

< ε

∣∣∣∣∫
G

f(x) dx

∣∣∣∣ .
So one gets |1 − c| < ε, and as ε was arbitrary, it follows c = 1 as
claimed.

We finalize these notes, by giving some examples of compact groups:

Example 5. Some classical easy examples of compact groups and therefore
unimodular groups include

1. O(n)

2. SO(n)

3. U(n)

where the topology comes from identifying their elements with vectors in the
corresponding large Euclidean space.
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